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ABSTRACT

Accurate detection and classification of cough sounds is a
key factor in monitoring respiratory health. While personal
cough detection via wearables has been studied, detecting
other people’s coughs in proximity remains underexplored.
This paper discusses the problem of detecting other people’s
coughs from multiple points of view, and then presents a
novel dataset designed to address this challenge. The latter
contains coughs recorded from both male and female subjects
at near and far distances, providing a balanced representation
of environmental noise conditions and room acoustics. Cough
events are modeled using Mel-frequency energies to capture
the spectral properties of the sounds, and these represen-
tations are fed into a variety of machine learning models,
ranging from simple and interpretable ones, such as Logistic
Regression, up to more complex ones, such as 2D convo-
lutional neural networks (CNN), for classification. While
standard ML models achieve a noteworthy performance, the
proposed CNN models can effectively distinguish between
near and far coughs, as demonstrated in a 5-fold stratified
grouped cross validation, achieving an average Receiver Op-
erating Characteristic Area Under the Curve (ROCAUC)
score of 0.94. This research underscores the importance of
uncontaminated cough monitoring, particularly in settings
where distinguishing between personal and external coughs
can enhance the reliability of health assessments and prevent
data misinterpretation.

Index Terms— Cough classification, acoustic signal,
neural network, wearables, near cough, far cough

1. INTRODUCTION

Cough is a fundamental physiological reflex that serves to
clear the respiratory tract of irritants, pathogens, and secre-
tions. It is an important clinical symptom across a range of
diseases, including respiratory infections, asthma, chronic ob-
structive pulmonary disease (COPD), and pulmonary fibrosis.
In healthcare, monitoring the frequency and severity of cough
can provide valuable diagnostic and prognostic information.
Persistent or abnormal cough patterns often indicate under-
lying pathology, and in certain diseases, cough is a critical
marker for disease progression and treatment efficacy. There-

fore, accurately tracking cough can enhance clinical decision-
making and patient care.

Automatic cough detection and counting using wearable
audio devices [1–14] have emerged as promising technologies
in health monitoring. These devices leverage machine learn-
ing algorithms and acoustic analysis [4, 5, 7, 14–23] to detect
cough events in real-time or off-line, offering a continuous,
objective measure of cough frequency. Such systems are non-
invasive and convenient, allowing patients to wear them dur-
ing daily activities. The ability to automatically detect and
count coughs can be particularly beneficial for diseases where
cough is a key symptom, such as COVID-19 [24–27], pro-
viding healthcare professionals with detailed data for patient
monitoring and early intervention [28–31].

Cough monitoring through wearable devices [32–35]
holds significant potential in the realm of remote healthcare.
With the increasing demand for telemedicine and digital
health solutions, the ability to track cough patterns remotely
can provide valuable insights into a patient’s respiratory
health. For individuals with chronic respiratory conditions,
such as COPD or asthma, continuous monitoring of cough
can offer an objective measure of disease exacerbations or
response to treatment.

Furthermore, remote cough monitoring can enhance the
management of patients with chronic illnesses who require
frequent medical oversight but are unable to visit health-
care facilities regularly [36–39]. It can reduce the burden
on healthcare systems by enabling early identification of
complications or worsening symptoms, allowing for prompt
intervention and reducing hospital admissions. In resource-
limited settings, where access to healthcare professionals
may be restricted, such systems can play a crucial role in
ensuring continuous patient monitoring and improving health
outcomes.

The integration of remote cough monitoring into health-
care also allows for better patient engagement and self-
management. Patients can receive real-time feedback on
their cough patterns, which can motivate adherence to treat-
ment plans and promote greater awareness of their respiratory
health. By empowering patients with insights into their symp-
toms, this technology can facilitate shared decision-making
between patients and healthcare providers, leading to more
personalized and effective care strategies.



Additionally, data from remote cough monitoring systems
can contribute to population-level health monitoring, partic-
ularly during outbreaks of respiratory diseases. Large-scale
data collection on cough patterns can help identify trends in
disease spread, aiding public health efforts to contain infec-
tious diseases. This type of surveillance can be particularly
important in managing pandemics, where early detection of
symptoms like cough can inform strategies for intervention
and mitigation [40–44].

However, one significant challenge in cough monitoring
systems is the problem of ”other people’s coughs” (OPCs),
where the system detects coughs from individuals other than
the intended user (target user). This contamination factor can
lead to inaccurate data, reducing the reliability of the cough
monitoring system. In environments with multiple individ-
uals, such as households or public spaces, OPCs can pose
a considerable problem, as it becomes difficult to attribute
cough events to a specific user. To mitigate this issue, ad-
vanced machine learning techniques and context-aware al-
gorithms are required to distinguish between different users’
coughs, ensuring the accuracy and utility of the monitoring
system.

1.1. Audio-based Approaches

”Cougher verification” is an approach that draws inspiration
from speaker verification techniques [45–47] in order to ad-
dress the problem of attributing coughs to the correct individ-
ual. Similar to how speaker verification systems authenticate
a user based on their unique vocal characteristics, cougher
verification would use the acoustic signature of a person’s
cough to distinguish it from other people’s coughs. Each indi-
vidual’s cough has subtle variations in sound frequency distri-
bution, duration, and intensity, influenced by the anatomy of
their respiratory system and the nature of their health condi-
tion. By employing machine learning models trained on these
distinct cough features, a cougher verification system could
accurately attribute cough events to a specific individual, even
in noisy environments or shared spaces. This approach would
involve creating a “cough profile” for each user based on a
series of recorded coughs, which would serve as a reference
for identifying future cough events.

Adapting speaker verification algorithms for cougher ver-
ification would involve the use of advanced signal processing
techniques and deep learning architectures like convolutional
neural networks (CNNs) [48], multitask learning with resid-
ual encoders [49], metric learning with CNNs [50], recurrent
neural networks (RNNs) and their variants [51,52], and cough
embeddings from DNNs [53]. These models would be trained
to learn the unique patterns in a person’s cough sound and dif-
ferentiate them from others. Additionally, such systems could
incorporate context-aware mechanisms, such as proximity de-
tection and microphone arrays, to further isolate the source of
the cough sound. A combination of individual cough profil-

ing and acoustic verification could significantly reduce the is-
sue of OPCs contaminating the data, making cough monitor-
ing systems more reliable for remote healthcare applications.
This methodology would not only improve the accuracy of
cough detection but also enhance patient monitoring by en-
suring that the data collected is truly reflective of the target
user’s health condition.

Despite its potential, the implementation of cougher veri-
fication in real-life settings presents several limitations. One
significant challenge is the variability of cough sounds, both
within an individual and across different contexts. Factors
such as the severity of illness, environmental noise, and
changes in a person’s respiratory condition over time can
alter the acoustic characteristics of a cough. For instance,
a person recovering from an illness might have a milder or
less frequent cough compared to when they are acutely ill,
making it more difficult for the system to consistently verify
coughs against a static profile. This intra-person variability
could reduce the accuracy of cougher verification models,
leading to false positives or negatives, particularly in dy-
namic real-world environments where individuals may move
between quiet and noisy spaces. More importantly, in mon-
itoring approaches that involve a smartwatch or any other
microphone-equipped device that allows variable distance
between the cougher and the recording sensor, potential so-
lutions face severe performance degradation: although the
verification algorithm can be trained on clear, noise-free,
close-proximity coughs, in real-life scenarios, target user’s
coughs can significantly vary due to the distance factor alone.
Another limitation lies in the practicality of deploying such
systems in multi-user or densely populated environments. In
settings like hospitals, shared homes, or workplaces, there
may be significant overlap in cough events, making it chal-
lenging for the system to isolate and verify coughs accurately.
Additionally, while machine learning models can be trained
to recognize subtle differences in cough sounds, the presence
of other background noises, such as speech, traffic, or ambient
sounds, can interfere with the system’s ability to distinguish
between different users’ coughs. The technology also re-
quires sufficient high-quality training data to build robust
cough profiles, which may not always be available, particu-
larly for individuals with rare respiratory conditions. Lastly,
privacy concerns may arise, as audio recording required for
user profiling and training may raise ethical questions re-
garding surveillance and data security in public and private
spaces. Moreover, from a technical perspective, an algorithm
designed to discriminate between OPCs and target user’s
coughs must achieve a high level of accuracy to ensure the
effectiveness of the overall cough detection system. If the
algorithm performs poorly, it could lead to two critical issues:
false negatives, where the target user’s coughs are incorrectly
classified as OPCs and removed, thus underestimating the
user’s cough frequency; and false positives, where OPCs
are mistakenly attributed to the target user, inflating cough



counts. Both scenarios could significantly compromise the
reliability of the data, potentially leading to incorrect clinical
assessments or delayed interventions. Furthermore, issues
with trustworthiness of remote health monitoring would arise
in such cases, ultimately reducing the clinical utility of the
system. Therefore, ensuring high precision and recall in
cough discrimination algorithms is crucial for maintaining
the accuracy and integrity of the entire cough detection sys-
tem pipeline. On top of that, the OPCs problem is relatively
rare in everyday life, making it an over-engineered solution in
most contexts. In typical day-to-day scenarios, most people
are not in close proximity to others who cough frequently
enough to cause significant confusion in cough monitoring
systems. The issue generally only arises in specific situa-
tions, such as when multiple people, like family members or
roommates, share confined spaces like apartments during flu
seasons or respiratory outbreaks. In these cases, distinguish-
ing coughs becomes more relevant, but for the average user,
the risk of picking up others’ coughs in most environments
is minimal. This rarity suggests that creating sophisticated
systems to handle this problem may be unnecessary for the
general population, where simpler, more user-friendly solu-
tions could suffice without adding unnecessary complexity.

1.2. Heart Rate and Accelerometry based Approaches

A potential solution to the issue of OPCs could involve inte-
grating additional data streams commonly available in wear-
able devices, such as heart rate and accelerometry, to enhance
cough detection accuracy or as a sole datastream for cough
detection [54–59]. By cross-referencing these physiological
and motion data with cough detection events, the system
could more reliably determine whether the detected cough
originates from the target user. For example, a sudden in-
crease in heart rate or specific movement patterns (such as the
rapid chest or abdominal movements associated with cough-
ing) could be used to confirm that a cough sound is coming
from the user. These physiological changes tend to occur si-
multaneously with coughing, and incorporating them into the
detection algorithm could help filter out OPCs by ensuring
the cough is accompanied by physical signs from the user.

Heart rate data, in particular, provides a valuable biomet-
ric signal that could be used to confirm whether a detected
cough sound corresponds with the user’s physiological state.
During coughing episodes, the body often experiences slight
fluctuations in heart rate due to the exertion involved in ex-
pelling air from the lungs. By analyzing these patterns, the
algorithm could validate whether a cough event is occurring
in tandem with a physiological response from the user, im-
proving the specificity of cough detection. This multi-modal
approach would not only help in identifying genuine coughs
from the target user but also allow the system to reject cough
sounds that occur without corresponding changes in heart
rate, which could be more likely to originate from other

individuals nearby.
Accelerometry, which tracks body movement, could fur-

ther refine cough detection by identifying the distinct motions
associated with coughing, such as the rapid contraction of
muscles in the chest or upper body. Combining accelerom-
etry data with cough audio detection could allow the system
to detect a user’s characteristic coughing motion and verify
the source of the sound. This additional layer of verification
would be especially useful in environments where multiple
individuals are present, reducing the risk of OPC contamina-
tion. By creating a multi-sensor system that leverages heart
rate and accelerometry alongside audio-based cough detec-
tion, wearable devices could improve the precision of cough
monitoring, ensuring that only the target user’s coughs are
recorded and analyzed for health monitoring purposes.

However, wearables such as belts and patches, which uti-
lize accelerometry and heart rate detection for cough monitor-
ing, face significant limitations when used for extended peri-
ods. One primary challenge is the discomfort and impracti-
cality of wearing these devices for long durations, especially
for continuous monitoring. Belts, for instance, may restrict
natural body movements and cause discomfort during daily
activities or sleep, while adhesive patches can cause skin irri-
tation, making them unsuitable for sensitive skin. Moreover,
the bulkiness or intrusive nature of these devices compro-
mises user-friendliness and might engage social discomfort
if placed in a visible body part, discouraging consistent usage
over time. These wearables also face difficulties in differen-
tiating the user’s cough from nearby sounds, such as OPCs,
due to their reliance on bodily signals rather than more tar-
geted acoustic or spatial data. Thus, while these devices offer
valuable health insights, their design limits long-term usabil-
ity and general acceptance among users due to issues of com-
fort and practicality.

1.3. A Potential Audio-based Single-Stream Solution

A potential and implicit solution to address the challenge of
distinguishing between the target user’s coughs and OPCs
involves creating a large dataset of cough sounds recorded
at varying distances and in different environmental contexts.
This dataset would be used to train machine learning algo-
rithms for a binary classification task, where cough sounds
are labeled as either ”near” (close to the wearable and thus
likely the target user’s cough) or ”far” (further from the mi-
crophone, indicating another person’s cough). By capturing
cough sounds in a range of real-world scenarios - such as quiet
indoor spaces, noisy urban settings, and different proximities
from the microphone - would allow the system to learn the
acoustic features associated with distance and environmen-
tal interference. Features like spectral attenuation, spectral
tilt, and echo patterns could be key in differentiating between
”near” and ”far” coughs. However, recent deep learning ad-
vancements rely on raw or close-to-raw data streams, such as



spectrograms, to learn a highly non-linear mapping function
between the input sound and the sound label, making feature
engineering obsolete.

Training a binary classification model on this labeled
dataset could significantly enhance the accuracy of cough
detection systems in distinguishing between the target user’s
cough and OPCs. For instance, the system could learn to
detect specific changes in the acoustic signal that occur as
a result of distance, such as sound intensity drop-off, at-
tenuated frequencies due to distance, and the presence of
environmental noise. This classification model could then
be integrated into wearable devices, allowing for real-time
filtering of cough sounds based on their proximity to the
user. By focusing on distance-based classification, the system
would not only improve the precision of cough monitoring
but also reduce the risk of data contamination from nearby
individuals, making remote health monitoring more reliable
and actionable in real-world settings.

1.4. Contributions

In this work we demonstrate that

• far (further than 1m) and near (less than or equal to 1m)
coughs are distinguishable from a single smartwatch
microphone

• mel-frequency energies (MFEs) have the capacity to
represent near and far coughs adequately

• convolutional neural networks are a suitable approach
for a binary classification task of detecting near from
far coughs.

2. METHODOLOGY

In this section, we will present some information about our
current technology, the approach taken, and the dataset we
compiled for our task.

2.1. Hyfe’s ID206 technology

Hyfe’s current tech for Remote Patient Monitoring involves
the use of a smartwatch named ID206. The smartwatch is
equipped with a MEMS microphone capable of sampling con-
tinuous audio at different sampling rates. Due to complexity
and performance issues, Hyfe’s current sampling rate is 8000
Hz, with a floating point precision of 32-bit. Continuous au-
dio is analyzed in a frame-wise manner and onset times are
identified via spectral and temporal criteria, assuming that the
explosive phase of a cough can be detected similarly to the
attack of a percussive musical instrument sound or a voice-
less stop sound in speech. A detected onset defines a 0.5-
second segment that may, or may not, be a cough sound. The

raw 0.5-second candidate waveform is transformed into Mel-
Frequency Energies (MFEs), a two-dimensional spectrotem-
poral representation that reveals the acoustic energy distribu-
tion among time and mel-scaled frequency (a perceptually rel-
evant transformation of the well-known linear frequency mea-
sured in Hertz). This representation is successively fed into a
classifier trained on millions of 0.5-second sounds, labeled as
either ”cough” or ”non cough”.

The parametrization of the raw audio signal, as well as
the architecture of the classifier, are carefully selected to op-
timize latency and memory constraints of ID206. In other
words, the MFE representation should be compact but ”suffi-
cient”, including all relevant information of the input audio,
and the classifier (a neural network, in Hyfe’s case) should
be accordingly designed to extract useful information for the
task, without being too complex or over-parameterized.

2.2. Dataset

Hyfe used a modified ID206 able to record and store contin-
uous audio on device. Cough and ambient sound recordings
were made in several different acoustic environments by sev-
eral different coughers (22 in total), both male and female
(14 and 8, respectively), aged from 20 to 67 years old. All
coughs were recorded in specific distances from the micro-
phone, starting from 5 cm and up to 300 cm. Each cough
sound was labeled as either ”near” or ”far”, with 100 cm
being the separation threshold: coughs recorded at a distance
less than or equal to 100 cm are considered as ”near”, while
all others are labeled as ”far”. It should also be noted that
coughers were asked to cough ”silently, as they would in
an crowded place”, ”normally, as they would at home”, and
”loudly, as if they were choking”. Hence, the dataset contains
a variety of cough sounds, ranging from loud and far coughs
to faint and close-to-microphone coughs. In total, 829 near
and 378 far coughs were collected, all sampled at 8000 Hz.
Figure 1 shows two coughs from the same person, at the same
environment, but at different distances.

2.3. Feature Extraction and Classification

In this section, we discuss the feature extraction pipeline and
the classification approaches suitable for the task in hand.

2.3.1. Feature Extraction

The computation of Mel-Frequency Energies is a critical step
in numerous audio processing applications, particularly in
speech and music recognition systems. The process begins
by converting a raw audio signal x[n] into the frequency do-
main using the Short-Time Fourier Transform (STFT). The
STFT is applied to overlapping frames of the signal, where
each frame xm[n] (with m indicating the frame index) is
multiplied by a window function w[n], such as a Hamming
window. The Fast Fourier Transform (FFT) is then used to



Fig. 1. Top panel: a near cough. Bottom panel: a far cough. Both coughs are from the same person.

compute the discrete Fourier transform Xm[k] for each frame,
where k represents the frequency bin. The resulting spectrum
is represented as:

Xm[k] =

N−1∑
n=0

xm[n]w[n]e−j 2πkn
N ,

where N is the number of points in the FFT, and Xm[k] pro-
vides the magnitude and phase information in the linear fre-
quency domain. However, the human auditory system per-
ceives frequencies non-linearly, particularly more sensitively
at lower frequencies and less sensitively at higher frequencies.
To account for this, the frequency scale is transformed to the
Mel scale, which is approximately linear below 1 kHz and
logarithmic above it. The relationship between a frequency f
in Hertz and its Mel-scaled counterpart fMel is given by:

fMel = 2595 · log10
(
1 +

f

700

)
.

This transformation reflects the psychophysical properties of
human hearing. The next step involves applying a bank of
triangular band-pass filters uniformly spaced in the Mel do-
main. Each filter Hi[k] corresponds to a range of frequencies
in the linear domain but is placed according to Mel frequen-
cies. The filters are constructed such that they overlap, with
the response of each filter increasing linearly on one side and
decreasing linearly on the other. Figure 3 shows 26 such fil-
ters for a frequency range of 4000 Hz, which corresponds to
the Nyquist frequency of cough audio signals.

The Mel-frequency energies are computed by passing the
linear magnitude spectrum |Xm[k]| through this filter bank.
For each filter i, the energy Ei is calculated as the weighted

sum of the squared magnitudes of the Fourier coefficients:

Ei =

K∑
k=1

Hi[k]|Xm[k]|2,

where K is the number of frequency bins, and Hi[k] is the
triangular filter response for the i-th filter. This process yields
a set of energies, each corresponding to a different range of
frequencies in the Mel scale, providing a perceptually rele-
vant representation of the sound signal. These Mel-frequency
energies are typically subjected to a logarithmic compression
to further emulate the non-linear sensitivity of human hearing
to intensity changes:

Elog
i = log(Ei).

This final log-Mel representation is commonly used as in-
put features in many audio-related machine learning applica-
tions, providing a robust and perceptually meaningful feature
set. We utilize MFEs in this work and we peak-normalize all
sounds before processing. Figure 2 shows MFEs for the two
coughs in Fig. 1.

2.3.2. Classification

MFEs are understood as two-dimensional (2D), spectrotem-
poral representations of cough sounds. Conventional machine
learning (ML) algorithms [60] can handle 2D data, such as
Mel-Frequency Energies (MFEs), by transforming or adapt-
ing the data to fit the expected input formats of these algo-
rithms. Most ML algorithms, such as Support Vector Ma-
chines (SVMs), Random Forests (RFs), and ensemble meth-
ods such as eXtreme Gradient Boosting (XGB), typically op-
erate on one-dimensional (1D) feature vectors. Therefore,
when dealing with 2D data, the key challenge is to reshape



Fig. 2. Top panel: MFE for a near cough. Bottom panel: MFE for a far cough. Both coughs are from the same person.

Fig. 3. 26 filters of a filterbank covering 4000 Hz.

or transform the data into a form that these algorithms can
process effectively. We choose the most common approach,
which is to ”flatten” the data into a 1D vector. In the case of
MFEs, which are typically represented as matrices where the
rows correspond to time frames and the columns to frequency
bands, each 2D matrix can be reshaped into a single long 1D
vector by concatenating all rows or columns.

We trained four different ML algorithms: Logistic Re-
gression (LR), Support Vector Machines (SVMs), Random
Forests (RFs), and eXtreme Gradient Boosting (XGBoost),
all trained on flattened vectors of the input MFEs. Logistic
Regression is a linear model used for binary classification,
estimating the probability of a class by applying a logistic
function to a linear combination of input features. It is sim-
ple, interpretable, and works well when the classes are lin-
early separable. SVMs are powerful classification algorithms

that find the optimal hyperplane to separate classes in the fea-
ture space, maximizing the margin between them. They are
effective in high-dimensional spaces and are robust to overfit-
ting, especially with a proper kernel choice. Random Forests
are ensemble methods that construct multiple decision trees
during training and aggregate their outputs for improved ac-
curacy and robustness. They handle high-dimensional data
well, are less prone to overfitting, and provide feature impor-
tance estimates. XGBoost is an optimized gradient boosting
algorithm that builds an ensemble of decision trees sequen-
tially, improving on previous trees by minimizing errors. It is
highly efficient, scalable, and often achieves state-of-the-art
performance in many classification and regression tasks.

However, more modern machine learning algorithms,
especially deep learning models like Convolutional Neu-
ral Networks (CNNs) [61], are highly effective at handling
2D data, such as images or spectrogram-like data (such as
MFEs). CNNs excel in recognizing spatial patterns by apply-
ing convolutions that preserve local structure and hierarchical
features. Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks can also process 2D
data with a temporal dimension, capturing dependencies over
time. These models automatically extract relevant features
from raw 2D data, making them superior to traditional ML
algorithms. We trained two CNNs, a deeper, more resource-
demanding network, and a shallow one, more computation-
ally efficient, suitable for embedded devices. Both operate on
the raw 2D MFE data, with the only difference being in the
parametrization of the MFEs and in their depth (model com-
plexity). CNN1 is a deep, multi-layer network, consisting of
convolutional layers, followed by max-pooling layers and a
dropout layer. A ReLU activation function is used in all con-
volutional layers. Furthermore, a flattening layer transforms



the resulting feature map into a 1D representation which is
fed to a series of dense-plus-dropout layers, also activated by
a ReLU. The final layer utilizes a sigmoid activation function
that outputs a score for each sound. Similarly, CNN2 follows
the same basic architecture but it has significantly less con-
volutional layers and only one dense-plus-dropout layer. A
sigmoid also drives the final prediction of any audio input.

3. RESULTS

A nested, stratified, grouped cross-validation scheme was
used for hyperparameter optimization and performance met-
ric computation. Care was taken to implement a cougher-
independent classification, with zero information leak be-
tween train, validation, and test sets. A variety of perfor-
mance metrics were selected, namely sensitivity, specificity,
F1-score, precision, and ROC-AUC. Sensitivity, also known
as the true positive rate, is defined as the ratio of true pos-
itives (TP) to the sum of true positives and false negatives
(FN), given by

Sensitivity =
TP

TP + FN

Specificity, or the true negative rate, measures the proportion
of actual negatives correctly identified, calculated as

Specificity =
TN

TN + FP

where TN represents true negatives and FP denotes false pos-
itives. Precision, or positive predictive value, indicates the
accuracy of positive identifications and is expressed as

Precision =
TP

TP + FP

The F1-score, which balances precision and sensitivity, is cal-
culated using the formula

F1-score = 2 · Precision · Sensitivity
Precision + Sensitivity

Finally, the ROC-AUC (Receiver Operating Characteristic -
Area Under Curve) evaluates the model’s discrimination abil-
ity by plotting sensitivity against (1 - specificity) across vari-
ous thresholds, with an AUC of 1 indicating perfect discrim-
ination and 0.5 indicating no discrimination. Together, these
metrics provide a comprehensive assessment of classification
model performance.

Table 1 shows performance metrics for each conventional
ML model. Support Vector Machines (SVMs) consistently
performs well, achieving the highest ROC-AUC (0.885) and
strong Precision (0.862) and F1-score (0.779). This is not
a surprising outcome since SVMs are well-known for their
ability to handle high-dimensional data and small datasets.
Random Forest achieves the highest Sensitivity (0.878), indi-
cating its strength in correctly identifying positive cases, but it

shows weakness in Specificity (0.571), which is significantly
lower than other models. Logistic Regression provides a bal-
anced performance, with strong Precision (0.860) and ROC-
AUC (0.856), while Extreme Gradient Boosting demonstrates
competitive results across all metrics, particularly in Sensitiv-
ity (0.863) and ROC-AUC (0.846), though it has lower Speci-
ficity (0.584). Overall, SVMs and XGBoost offer the most
consistent and competitive performances across multiple met-
rics.

Complementary to conventional ML models, Table 2
illustrates a comparison between our two convolutional neu-
ral networks. Specifically, CNN1 consistently outperforms
CNN2 in all metrics, achieving an impressive ROC-AUC of
0.943, indicating a strong ability to discriminate between
classes. Also, it achieves noteworthy Precision (0.922), F1-
score (0.912), and Sensitivity (0.904), showing its overall
robust classification performance. Specificity for CNN1 is
also high at 0.816, reflecting its ability to correctly identify
negative cases. CNN2, while still performing reasonably
well, exhibits lower values across the board, particularly in
Specificity (0.697) and ROC-AUC (0.900), though it still
maintains solid results in Precision (0.848) and Sensitivity
(0.884). Overall, CNN1 demonstrates superior performance,
especially in its ability to balance sensitivity and specificity.
However, it should be noted that our shallow model (CNN2)
performs adequately in such a small audio dataset. It is ev-
ident that CNNs are more promising candidate models for
solving the OPC problem.

4. CONCLUSIONS AND FUTURE WORK

In conclusion, this work demonstrates that it is indeed pos-
sible to predict (in a binary setting) the distance of a cough
sound from the target individual with high accuracy using
machine learning models, as evidenced by the strong per-
formance metrics, including a ROCAUC score of 0.94 at-
tained by convolutional neural networks. The development
of a novel dataset that includes both near and far coughs, un-
der varied environmental conditions, played a crucial role in
achieving these results. However, while these findings high-
light the potential for accurate detection of external coughs,
further validation with larger and more diverse datasets is nec-
essary to ensure robustness and generalizability across differ-
ent environments and populations. Future work should focus
on expanding the dataset and exploring additional factors that
may influence cough sound detection and classification, ulti-
mately contributing to more reliable respiratory health moni-
toring.



Metric Logistic Regression Support Vector Machines Random Forest eXtreme Gradient Boosting
ROC-AUC 0.856 (0.050) 0.885 (0.053) 0.844 (0.040) 0.846 (0.043)
Precision 0.860 (0.085) 0.862 (0.086) 0.809 (0.104) 0.810 (0.105)
F1-score 0.746 (0.058) 0.779 (0.058) 0.759 (0.063) 0.754 (0.067)
Sensitivity 0.750 (0.120) 0.802 (0.101) 0.878 (0.056) 0.863 (0.080)
Specificity 0.757 (0.121) 0.749 (0.122) 0.571 (0.197) 0.584 (0.190)

Table 1. Performance metrics for Logistic Regression, Support Vector Machines, Random Forest, and eXtreme Gradient Boost-
ing over a speaker-independent 5-fold stratified, grouped cross-validation. Best performance in bold.

Metric CNN1 CNN2

ROC-AUC 0.943 (0.029) 0.900 (0.068)
Precision 0.922 (0.047) 0.848 (0.092)
F1-score 0.912 (0.038) 0.860 (0.077)
Sensitivity 0.904 (0.043) 0.884 (0.107)
Specificity 0.816 (0.106) 0.697 (0.157)

Table 2. Performance metrics for CNN1 (deep model) and CNN2 (shallow model) over a speaker-independent 5-fold stratified,
grouped cross-validation. Best performance in bold.
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[5] Jesús Monge-Álvarez, Carlos Hoyos-Barceló, Paul
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